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Previous studies [1,2] have examined the features of the eombusffon 
mechanisms of condensed mixtures arising from the heterogenous ran- 
dom structure of the condensed phase. Although the mean burning 
rate remains constant for a given specimen if the components are 
adequately mixed and U the temperature and pressure are constant, 
the microstructure of the combustion zone fluctuates. Either fuel or 
oxidizing agent may appear at a given point in a coordinate system 
linked to the mean level of the burning surface. The two components 
burn at different rates even in the steady state, so the instantaneous 
rate of combustion varies, and the surface of the condensed phase is 
not planar. If the oxidant is ammonium perehlorate, it can burn on 
its own [3J, whereas patches of fuel can burn only when oxidant is 
supplied (usually by molecular diffusion). It is also possible for parts 
rich in fuel m burn independently and to have a steady burning rate 
dependent on the external conditions, e.g. ,  bidisperse systems [4] 
or oxidant and fuel floating on the burning surface. 

figure I shows schematically the condensed phase and burning 
surface. Along the x-axis lie in succession areas of fuel (shaded area, 

2) and oxidant (white, 1). To calculate the mean speed of the burn- 
ing surface along the x-axis we need to derive an averaged solution 
to a complicated problem of uneven thermal conduction, diffusion, 
and reaetiorl in a system with random component distributions. This 
is essentially a statistical problem, since even regular (e. g., spherical) 
particles of oxidant in general are randomly distributed. 

In view of the complexity, it is of interest to examine simpler 
models, e .g . ,  a stratified condensed system in which the properties 
vary only along the perpendicular to the combustion front (Fig. 2). 

Let ul and ~2 be the steady-state burning rates for substances t and 
2 (it is assumed that both can burn independently). An example is 
alternating layers of different grades of gunpowder. 

If the thicknesses h 1 and hz are fairly large, the mean rate can be 
calculated roughly as 

~2 = ti~t2~ h~ @ h~ 
alh:t 2[- r , " 

This simple formula is not correct in the general case because the 
front speeds in the system of Fig. 2 will not be ~1 in 1 and gz in 2; 
when the front passes through the 1-2 boundary there will be a tran- 
sitional state between "ffl and gz- Zel'dovich's theory [5] of burning for 
low and high explosives indicates that the transients in a condensed 
system are substantially dependent on the structure of the heated layer. 
Zel'dovich [6] has examined the combustion of individual thin plates 
of low explosive. If the thickness of a plate becomes comparable with 
the effective thickness of the heated layer, which is XT = ~ / 'g ,  where 

is the thermal diffusivity, then the rate of combustion will differ 
appreciably from the steady-state value. 

gig. 1 

Fig. 2 

Near the 1-2 contact there is a transition zone whose thickness is 
several x T. It is not always possible for combustion to pass from 1 to 2. 
The theory of ignition for solid rocket fuels [7,8] indicates that 
necessary conditions for ignition are that the surface attains a tem- 
perature T s and that the temperature gradient does not exceed a certain 
critical value. Substance 2 will ignite only if Ta  > Ts2 and the 
temperature gradient at the boundary is below the critical value. 
Clearly, Ts2 will be reached at the interface before the gasification 
front in substance 1 reaches the interface. If the gradient is then less 
than critical, 2 may ignite before 1 has burned up completely. This 
mechanism may be responsible for additional dispersal of the condensed 
phase. The usual dispersal mechanism [9] involves a vigorous exo- 
thermie reaction in the condensed phase, whereas the above mecha- 
nism can occur in a chemically inert but heterogeneous condensed 
medium. 

The burning front cannot propagate in a one-dimensional stratified 
system in the absence of heat relase in the condensed phase if Tsr 

Tsz, since the burning will die out on passage from 2 to 1 (Tsl > 
> TsD. In an actual system, this does not happen for the following 
reasons: a) the actual structure of the condensed phase is not one- 
dimensional, which provides supply of heat and is the lacking com- 
ponent to adjacent parts of the burning surface, b) in most cases the 
burning occurs with appreciable heat release in the condensed phase 
[91, so the ignition-extinction conditions are different from those 
derived in Zel'dovich's theory. It is therefore of interest m examine 
by experiment the burning characteristics of a one-dimensional 
layered System with layers differing substantially in burning rate not 
only as regards simulation of a persistent transient zone but also as 
an example of combustion in a system in which the very possibility 
of combustion is determined by reaction in the condensed phase. 
Even if substances 1 and 2 have similar steady-state burning rates, 
the burning zone is a permanently transient one if the thermophysical 
characteristics of the substances are sufficiently different. An example 
is provided by metallized and unmetallized ballistic powders: the 
two burn similarly but the thermal eonduetivities can differ substan- 
tially. The condition for the effect to be observable is that the layer 
thicknesses h should be comparable with the characteristic size of 
the heated layers in 1 and 2; if this is so, the burning rate will always 
be nonstationary. We take the thermophysical parameters of the 
condensed phase as X = 5-10 -4 c a l / c m - s e c - d e g ,  p = 1.5 g/cm s, and 
Cp = 0.33 cal /g-deg,  which give for burning rates of i and 10 mm/sec 
that XTl = 0.1 mm, xT2 = 0.01 mm. Although there is serious dif- 
ficulty in actually making a system with a characteristic layer thickness 
of 0.1 ram, this difficulty can, in principle, be overcome. The 
characteristic particle sizes in real mixtures are 10-100 p, so the 
nonstationary effect does play a substantial part. 
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A direct result of this nonstationary combustion is that the two- 
temperatures assumption [10] is not applicable to burning of a real 
condensed system of random structure, since the basic assumption 
(equal gasification rates for oxidant and fuel) may not be met under 

real conditions. 
Transient conduction in the burning zone does not exhaust the 

causes of nonstationaty burning in mixtures, as a major part is played 
by transient heat transfer in directions perpendicular m the vector 
for the mean velocity of propagation of the combustion front. The 
literature [11] discusses only diffusion mixing of components in the 
combustion zone, whereas transverse heat transfer is equally impor- 
tant. 

Consider a simple example of combustion in a layered system. 
We assume that the two fuels are identical in characteristics apart 
from the thermal diffusivity and that this quantity changes smoothly 

in the following way: 

x(x) = X o + :~ sin kx. (1) 

We assume also that }r 0 is small, and so we can use Novozhiiov's 
method for calculating the mean burmng rate under conditions of 
varying thermal conduction in accordance with Zel'dovich's theory 
of transient-state burning [5]. 

In the case of burning with a harmonically varying external pres- 
sure, the following is the equation for thermal conduction in the 
condensed phase as written in the laboratory coordinate system: 

L aT o • (2) 
o T = ~  ~7 

The condensed phase lies in the volume 

: ~ z  s = _~u (~)d~- 
0 

The boundary conditions for (2) express the constancy of the 
temperatures at the surface and at depth in the condensed phase: 

T (xs) = Ts, T (--oo) = T o. (3) 

Constancy of T(xs) means that the combustion of the condensed 
system is described by the Zel'dovich-Belyaev model [5]. 

The nonstationary burning rate u(t) [5, 13] is a function of the 
pressure and the temperature gradient at the surface of the condensed 

phase: 

tt (t) = q) (p, (OT / Ox)xs); (4) 

We assume that the following formula describes the steady-state 
dependence of the combustion rate on the pressure and initial tem- 
perature: 

a = f (p)e ~'r~ (5) 

Then [5,13] the nonstationary burning law of (4) is derived by 
expressing the initial temperature in (5) via the temperature gradient 

at the burning surface: 

T 0 = T  s ~ (cqT) 
-- T ~-~ / (6) 

We substitute (6) into (5) to relate the nonstationary burning rate 
to the temperature gradient at the burning surface: 

u = / (p) exp  @ T  s - -  ~-- ~ (@T~ 
u \Oz/s]' 

(% 

It is convenient to transfer to a moving coordinate system linked 
to the burning surface: 

t 

x ' = z §  fU(~l)&l, t = t :  
o 

Here (2), (3), and (7) become 

a T i u ( t , ) a T  a [ (x', " aT] 
o-7 E#" = ~ 7  " ~ t ) a g  j '  

~'~<0, E > O ,  , (8) 

Xs'=0.  T; ,=o=Ts ,  T( - -c~)=To,  (9) 

n aT 
u = / (p) exp [[tTs -- u~(~XOs ! .  (zo) 

All the subsequent discussion relates to this coordinate system, 
and the primes are omitted for simplicity. The following formula 
defines the unperturbed temperature distribution, which corresponds 

to ~i = 0: 

7 r (x) = To + (Ts--To) exp ((a / xo)x), (ii) 

in which ~ is the steady-state burning rate for ~ = 0. In the dilnen- 

sionless variables 

~ T - - T o  v ~  u ~q__ k xo 
T s -- To ' a 

we replace (i) and (6)-(8) by 

~0 ~0 L o 
(12) 

oe ae ~ [• (L ~) oO ] 

( 0 ) = t ,  e ( - - ~ ) = 0 ,  ~ = e  a, (14) 

• ~ o , (s =-- ~ (T~ -- roD. (15) 

As ~/~0 << I, we use successive approximation to solve (12)-(15) 

by putting the solution as 

t~ (~, , )  = ~  (~).+ ~x~ m (~, ~) + 60 (2~ (L ~)  + ..., 

v(~) = I + S v m  (~) + 6v~(~) + . . . .  

8~(i), 60(I) N • / xo, 60 (2), BYte) ~ (• / Zo) .2. (16) 

Here 61~ (1) and 6v (1) are linear perturbations to the steady-state 
solution. In the linear approximation, the perturbations are harmonic 

functions of time having the dimensionless frequency g}, while the 
mean burning rate remains unchanged. In order to calculate the change 
in the mean rate we have to consider higher (nonlinear) approximations, 
since we expect the sum and difference frequencies 2~2 and 0 to ap- 
pear in the second approximation: i .e . ,  we expect a constant com- 
ponent. We derive the solutions in the first and second approximations. 
We substitute (18) into (12)-(15) and neglect terms whose order of 
smallness is higher than the first to find the equations and conditions 
for 5~(1) and 6v (l), which can be written as 

a~ ~- a~ & 

= 5v(t>e~ _ x L _0 [e~ sin ~ (~ -- ~)] (1~) 
• a~ 

80 (0 (O, ~) = 6~ (') (-- o% ~) = 0, (18) 

/a60<l>~ • /g e - - I  \ 
g6v<~) = ~ ) o  -- ~oo sin S2~: \ -- (19) 7 - ) "  
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It is best to seek the solution to (17)-(19) via complex represen- 
tation of ,~(x) and 6v(~): 

6v(t) = O (~) ein% 6v(r) = Vein% (20) 

in which O(g) and V are complex amplitudes. The linear pertur- 
bations in the temperature and velocity are determined by the real 
parts of (20). 

We get from (17)-(19) for the complex amplitudes that 

deO dO i-QO : Ve ~ - -  i u~ (t --  .q) e O-in)  ~ , (21) 

O.(O) = O (--c~) = O, (22) 

gV = i~r / u s 4- (dq/d~)o.  (23) 

The solution to (21) subject to (22) is 

V , ~7"_ x~ 1 -  if~, ~,~ e_~a~+~) 0 (~) = - -  (e " e ~) -~ i~ ~h% h ~ - ~  te - ' 

a~ : a  A (1 + ]/1 + 4i(A). (24) 
We differentiate (24) and use (23) to get an explicit expression for 

the amplitude of the linear speed perturbation: 

V = i  x~ c q - - t  (25) 
uo ( a ~  - -  t )  (2 - -  aO " 

Consider now the second approximation. We substitute (16) into 
(12)-(15) and retain terms of the second order of smallness to get 

060(2) 06t~(~) 060(2) = 6v(~! e ~ -F "(r) 060 it) 
a~ 0~ - - - o ~  6 . . - - ~ - +  

-r 

m O~ L o o J 

xa O [Ogt~ (t) sin a(~. -- T)] (26) 
- -  xo o~ k 0~ 

~(~> (0) = 60 ,'~) (-- ~ )  = 0, (27) 

g~,.(2} _ (08~(~)~ + 2e - -  t (8~a)s _ 6~(~ ) (o60a~ 
- -  \ ~ - ' 1 o  ~ \--b~-]o + 

+ (~,(r) _ (O~(r>~ ~ _ ~ f~(r)~'~ ~os ~ , .  (26) 
o 

As we are interested only in the constant component of the rate 
perturbation, there is no need to solve (26)-(28) completely. 

Let 61~(c z) and 6v~ 2) be the constant components of the temperature 
and rate perturbations, which satisfy (26)-(28), in which we put O/at = 
= 0 and discard time-dependent terms. Then the equation for 6v c, 
which does not contain an unknown function on the right, is integrated 
directly between the limits ~ = 0, g = -*r with allowance for (27) 
to give an expression for the constant component of the temperature 
perturbation at the burning surface: 

(~80 ("-)~ (I '1 (• 12 - ~ - ~  )o = 6"~)  + i v I 2 -  g) *o • sin a v 4- 2" \no--/ " (29) 

In (29) we have used the representation V = IvleiaV for the com- 

plex amplitude of the linear rate perturbation. 
Equation (28) can be written as follows after the time-dependent 

terms have been discarded: 

C - Z C  / o ~ 1 v l~ - 

I V [ ( i - - g )  ~1 sinC~v - i (x.z '~ 2 
2 • 2- \~-o} " 

(30) 

3 2 2  

From (29) and (30) we get that 

6@ ) = _ [ v P ,  V = i - -  • a ~ - - I  
4 ~0 (nag-- l)(2--=1) " (31) 

From (31) we can consider the limiting cases in which i) ~0/~ is 

much greater than i/k (characteristic length for variation in the 

thermal diffusivity), i . e . ,  f2 >> 1, and 2) 12 << 1: 

'i ~ (~ >i>- l ) ,  

uo 4 l g - - t  I ( f ~ l ) .  (32) 

It follows from (31) and (32) that the burning rate for a system with 

the variable thermal conductivity of (1) is less than that for ~c 1 = 0 
and that 7 is not affected by harmonic perturbations in the thermal 
conductivity whose period is much less or much greater than the 
characteristic size of the thermal layer. 

The above analysis can be applied in a straightforward way to burning 

with a variable temperature at the burning surface [12,14]. Analogy 
with weak harmonic pressure perturbations indicates that periodic 
variation in the parameters of the condensed phase should result in 
resonant modes of combustion, in which the mean rate for a layered 
system will substantially exceed the mean steady-state rates for both 
components. 
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